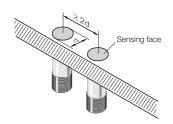
BALLUFF

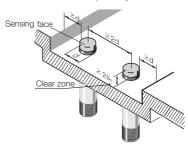

Safety Instructions and Functions and Features

- Please read the product description prior to set-up of the unit. Ensure that the product is suitable for your application without any restrictions.
- The unit conforms to the relevant regulations and EC directives.
- Improper or non-intended use may lead to malfunctions of the unit or to unwanted effects in your application.
- That is why installation, electrical connection, set-up, operation and maintenance of the unit must only be carried out by qualified personnel authorized by the machine operator.
- The capacitive sensor detects without contact metals, almost all plastics, glass, ceramics, wood, paper, oils, greases, water and all hydrous materials and indicates their presence by providing a switched signal.

Mounting Restrictions

Flush-mount (shielded) proximity switches

... can be installed with their sensing faces flush to the metal. The distance between two proximity switches (in row mounting) must be ≥ 2d.


Opposing installation of 2 sensors

 \dots requires a minimum distance of a \geq 4d between the sensing faces.

Unshielded proximity switches

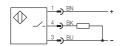
The sensing face must extend ≥ 2s_p from the metallic installation medium. The distance between two proximity switches must be ≥ 2d.

To ensure that the sensors are not mechanically destroyed during installation, make sure that you comply with the following torque figures.

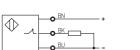
Housing size	Material	Tightening torque
M5×0,5	V2A	3 Nm
M8×1	V2A	15 Nm
M12×1	V2A	40 Nm
M18×1	V2A	60 Nm
M30×1,5	V2A	90 Nm

Electrical Definitions

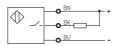
Normally open

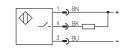

Normally closed

PNP (+) sourcing

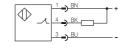

Cable/terminals

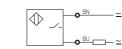
PNP/NPN selectable


Connector

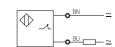


NPN (-) sinking

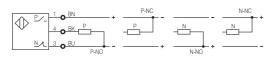

Cable/terminals



Connector


Protection isolated (Protection Class II)

Normally closed


AC/DC 2-wire

Normally open

NO/NC user selectable

(XDC - output)

Switching function

N.O. (normally open):

The sensor closes a circuit to the load when a target is detected or the sensor is operated. Contacts are open when the sensor is not operated and when there is no external force on the actuator.

N.C. (normally closed):

The sensor opens a circuit to the load when a target is detected or the sensor is operated. Contacts are closed when the sensor is not operated and when there is no external force on the actuator.

BN	brown
BK	black
BU	blue
WH	white

Manual - Capacitive Sensor BCS

Adjustment

Flush (shielded) Sensors

Presence Detection of Solid Objects

a larger sensing range can be chosen.

for the ceramic plate.

capacitive sensor for ideal sensing conditions

Mount the sensor in the actual sensing position

presence detection application to move the object to the

The following procedures are outlined for setting a normally open

2. Set up the target for the worst case condition. This means for a

farthest occurring position from the sensor.
3. All BCS capacitive sensors are already factory preset to their

maximum operational sensing range. The sensor has to move closer to the target object, if the farthest object position does

not assure a reliable switching. Alternatively, a larger sensor with

The sensitivity can now be reduced by turning the potentiometer CCW until the sensor switches off. Increase now the sensitivity

CW by 1/2 turn to set the sensor to its optimal sensitivity setting.

In the following example, a shielded capacitive sensor in a M12

sn of 4 mm to metal or by approximation to your hand. When moving the sensor towards the target object, the rated switching distance sn to the ceramic plate has been reduced to approx. 2mm.

The sensor is factory preset to a maximum rated switching distance

This distance is now the maximum permissible switching distance

To ensure that Balluff's BCS capacitive sensors work reliably within

their technical specifications, they have a greater sensing distance than the indicated maximum rated switching distance sn in the datasheet. If the user decides to adjust the sensor to a switching distance greater than 2mm for the above described ceramic plate, the sensor will operate in an unreliable mode. This entails a risk that temperature and other environmental factors or electrical interferences

tubular housing will be used to detect a ceramic plate.

may lead to unreliable switching conditions.

Flush mountable sensors are normally being used for presence detection of objects or for indirect point level detection of solids, powders or liquids. The following two setup routines help to assure proper setup and operations. All BCS sensors allow sensitivity adjustment potentiometer.

Point-Level Detection through Container Walls

Empty Setup (normally open)

- 1. Mount the sensor in the actual level sensing position flush to the non-metallic container wall.
- 2. All BCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor will initially trigger on the container wall material.
- 3. The sensitivity has to be reduced by turning the potentiometer CCW until the sensor switches off. Increase now the sensitivity CW by 1/2 turn to set the sensor to its optimal
- sensitivity setting.
 4. The sensor should switch on at 40% to 50% sensing area coverage - readjust the sensitivity CCW if the coverage is above 50% and CW if it is below 40%.

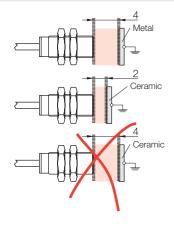
Full Setup (normally open)

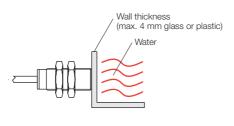
- 1. Mount the sensor in the actual level sensing position flush to the non-metallic container wall.
- 2. All BCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor will initially switch on to the container wall
- 3. The sensitivity has to be reduced by turning the potentiometer CCW until the sensor switches off. Increase now the sensitivity CW by 1/2 turn to set the sensor to its optimal sensitivity setting.
 4. The sensor should switch on at 40% - 50% sensing area
- coverage readjust the sensitivity CCW if the coverage is above 50% and CW if it is below 40%.

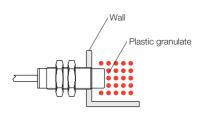
The partition wall may only be made of glass or plastic. A rule of thumb for the maximum thickness of the wall yields a value of approx. 10 to 20% of the sensor's rated switching distance, but max. 4 mm. SMARTLevel sensors can sense through up to 12mm of wall, but are limited to water-based or conductive liquids. For very small amounts of liquids and small tank radiuses which do not allow a tight form-fitting mounting, the sensors should be adjusted for approx. 30% sensing area.

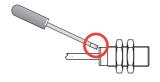
Non-Flush (unshielded) Sensors

These capacitive sensors use a larger spherical electrical field which is especially suited as level detectors for liquids, granulates or powders.




Direct Point-Level detection


Full Setup (normally open)


- 1. Mount the sensor in the actual level sensing position with regards to the minimum clearance guide line in our mounting
- 2. All BCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor will initially switch on contact with the target material.
- 3. The sensitivity has to be reduced by turning the potentiometer CCW until the sensor switches off. Now increase the sensitivity CW by 1/2 turn to set the sensor to its optimal sensitivity setting.

This setup procedure assures that the influence of temperature and material build-up has been reduced to a minimum. In some instances, the target material creates extensive material build-up or has a very high relative dielectric constant (conductivity) leading to uncontrollable repetitive false triggering.

Important: Different material properties and conditions have to be taken into consideration during the calibration process

All Balluff BCS capacitive sensors are therefore equipped with highly accurate trim potentiometers to adjust the

device's sensitivity. Turning the potentiometer clockwise (CW) increases the sensitivity, whereas counter-clockwise (CCW) turning reduces it.